Tool & high speed steel

Tool & High Speed Steel

One of the earliest applications of molybdenum was as an efficient and cost effective replacement for tungsten in tool steels and high-speed steels. The atomic weight of molybdenum is roughly half that of tungsten and therefore 1% Mo is roughly equivalent to 2% tungsten. Because these highly alloyed steels are used in the working, cutting and forming of metal components, they must possess high hardness and strength, combined with good toughness, over a broad temperature range.

Coining dies

Coining dies made of cold work tool steel,
grade K 190 (C2.3%, Cr12.5%, Mo1.1%, V4.0%)
Courtesy of Boehler Edelstahl


Tool steels

Molybdenum in tool steels increases their hardness and wear resistance. By reducing the 'critical cooling rate' molybdenum promotes the formation of an optimal martensitic matrix, even in massive and intricate moulds which cannot be cooled rapidly without distortion or cracking. Molybdenum also acts in conjunction with elements like chromium to produce substantial volumes of extremely hard and abrasion resistant carbides. As the physical demands placed on tool steels increase, so too does the molybdenum content.

% Molybdenum content in tool steels Steel typeMoPlastic Moulding steels up to 0.5Cold work steels 0.5 - 1.0Hot work steels up to 3.0

How structural steel is made? - AISC
Hollow Steel Sections (HSS) are manufactured from rolls of sheet steel that may
have originally been produced in either a Basic Oxygen Furnace (BOF) or an ...


High speed steels

When tool steels contain a combination of more than 7% molybdenum, tungsten and vanadium, and more than 0.60% carbon, they are referred to as high speed steels. This term is descriptive of their ability to cut metals at 'high speeds'. Until the 1950's, T-1 with 18% tungsten, was the preferred machining steel but the development of controlled atmosphere heat treating furnaces made it practical and cost effective to substitute part or all of the tungsten with molybdenum.

Typical Compositions of
Selected High-Speed Steels (%) GradeCCrMoWVT-1 0.75 - - 18.0 1.1 M-2 0.95 4.2 5.0 6.0 2.0 M-7 1.00 3.8 8.7 1.6 2.0 M-42 1.10 3.8 9.5 1.5 1.2

Additions of 5-10% Mo effectively maximize the hardness and toughness of high-speed steels and maintain these properties at the high temperatures generated when cutting metals. Molybdenum provides another advantage: at high temperature, steels soften and become embrittled if the primary carbides of iron and chromium grow rapidly in size. Molybdenum, especially in combination with vanadium, minimizes this by causing the carbides to reform as tiny secondary carbides which are more stable at high temperatures. The largest use of high-speed steels is in the manufacture of various cutting tools: drills, milling cutters, gear cutters, saw blades, etc.

The useful cutting characteristics of high-speed steel have been further extended by applying thin, but extremely hard, titanium carbide coatings which reduce friction and increase wear resistance, thereby increasing cutting speed and tool life.

High Speed Steel, 1969 - YouTube

The exceptional high temperature wear properties of molybdenum-containing high-speed steels are ideal for new applications such as automobile valve inserts and cam-rings.

Mill cutter

Mill cutter (courtesy Boehler Edelstahl)

The Serious Eats Guide to Kosher for Passover Wine
Wine is an integral part of the Passover holiday. "It has come to be a symbol of joy and celebration," notes Rabbi David Segal. "Traditionally, the Passover seder includes four cups of wine, perhaps a sign of Passover's paramount importance as a celebration of freedom.
1st-Grade Teacher Deanna Jump Earns $1 Million Selling Lesson Plans
How to reward good teachers -- and punish the bad -- is one of the most fraught issues in education. But now talented teachers can earn a bonus without going through unions or principals or politicians.
Crowdsourcing and Contests Make the Grade for SAP MOOCs
One of the biggest criticisms of MOOCs is that they can’t replicate the unique learning environment of the classroom. The latest course from the openSAP MOOC curriculum, entitled, “Introduction to SAP Fiori UX,” has turned that argument on its head by fostering a remarkable level of collaboration between instructors, classmates and SAP SAP overall.